

Geometric Formulas

Circles (360°)

d = diameter ½ d = radius

<u>Area</u>

 $A=\pi r^2$

 $\underline{\mathsf{Circumference}}$

 $C=2\pi r$ or πd

Sphere

<u>Volume</u>

 $V = 4/3 \pi r^3$

Triangles (180°)

<u>Area</u>

 $A = \frac{1}{2}bh$

Pythagorean Theorem

 $a^2 + b^2 = c^2$

Special Right Triangles

45-45-90

30-60-90

Squares (360°)

<u>Perimeter</u> 4s

Area $A = s^2$

Rectangles (360°)

Perimeter 2L + 2W

 $\frac{Area}{A = LW}$

Parallel Lines and Transversals

Angles indicated by "x" are all congruent. Angles indicated by "y" are all congruent.

 $x + y = 180^{\circ}$

Polygons (5+ sides)

Divide into triangles from a common vertex and add up each 180° section.

In the figure below, there are 4 triangles: $4 * 180 = 720^{\circ}$

